Reg. No. : \square

Question Paper Code : 80764

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Second Semester
Civil Engineering MA 2161/MA 22/080030004 - MATHEMATICS - II

(Common to All Branches)
(Regulations 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Find the particular integral of $\left(D^{2}-2 D+1\right) y=\cosh x$.
2. Solve : $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=0$.
3. The temperature of points in space is given by $T(x, y, z)=x^{2}+y^{2}-z$. A mosquito located at $(1,1,2)$ desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move?
4. State Green's theorem in a plane.
5. Prove that a real part of an analytic function is a harmonic function.
6. Find the invariant points of $w=\frac{z}{z^{2}-2}$.
7. Evaluate $\int_{C} \frac{z+4}{z^{2}+2 z} d z$ where C is the circle $\left|z-\frac{1}{2}\right|=\frac{1}{3}$.
8. Find the residue of $f(z)=\frac{1-e^{-z}}{z^{3}}$ at $z=0$.
9. State the first shifting theorem on Laplace transforms.
10. Verify initial value theorem for $f(t)=1+e^{-t}(\sin t+\cos t)$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=\frac{e^{-x}}{x^{2}}$ by the method of variation of parameters.
(ii) Solve : $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$.

Or
(b) (i) Solve the simultaneous differential equations:

$$
\begin{equation*}
\frac{d x}{d t}+5 x-2 y=t ; \frac{d y}{d t}+2 x+y=0 . \tag{8}
\end{equation*}
$$

(ii) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=x^{2}+\frac{1}{x^{2}}$.
12. (a) (i) Show that $\bar{F}=\left(y^{2}+2 x z^{2}\right) \bar{i}+(2 x y-z) \bar{j}+\left(2 x^{2} z-y+2 z\right) \bar{k} \quad$ is irrotational and hence find its scalar potential.
(ii) Using Stoke's theorem to evaluate $\int_{C} \bar{F} \cdot d \bar{r}$ where $\bar{F}=(\sin x-y) \bar{i}-\cos x \bar{j}$ and C is the boundary of the triangle whose vertices are $(0,0),\left(\frac{\pi}{2}, 0\right)$ and $\left(\frac{\pi}{2}, 1\right)$.

Or

(b) (i) Prove $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$ and deduce that $\frac{1}{r}$ satisfies Laplace equation.
(ii) Verify Gauss divergence theorem for $\bar{F}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$, where S is the surface of the cuboid formed by the planes $x=0, x=a$, $y=0, y=b, z=0$ and $z=c$.
13. (a) (i) Prove that $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is harmonic. Find the corresponding analytic function and the imaginary part.
(ii) Find the bilinear map which maps the points $z=0,-1, i$ onto the points $w=i, 0, \infty$. Also find the image of the unit circle of the z plane.

Or
(b) (i) Prove that $w=\frac{z}{1-z}$ maps the upper half of the $z-$ plane to the upper half of the w-plane and also find the image of the unit circle of the z plane.
(ii) Find the analytic function $f(z)=u+i v$ where $v=3 r^{2} \sin 2 \theta-2 r \sin \theta$. Verify that u is a harmonic function.
14. (a) (i) Evaluate $\int_{C} \frac{e^{z} d z}{z(1-z)^{3}}$ if C is $|z|=2$, by using Cauchy's integral formula.
(ii) Evaluate $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}$.

Or
(b) (i) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurent's series valid in $1<|z|<3$ and also $0<|z+1|>2$.
(ii) By using Cauchy's residue theorem evaluate $\int_{C} \frac{\sin \pi z+\cos \pi z}{(z+2)(z+1)^{2}} d z$ where C is $|z|=3$.
15. (a) (i) Apply convolution theorem to evaluate $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
(ii) Find the Laplace transform of the following triangular wave function given by $f(t)=\left\{\begin{array}{ll}t, & 0 \leq t \leq \pi \\ 2 \pi-t, & \pi \leq t \leq 2 \pi\end{array}\right.$ and $f(t+2 \pi)=f(t)$.

Or

(b) (i) Find the Laplace transform of $\frac{e^{a t}-e^{-b t}}{t}$.
(ii) Evaluate $\int_{0}^{\infty} t e^{-2 t} \cos t d t$ using Laplace transform.
(iii) Solve the differential equation $\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=e^{-t}$ with $y(0)=1$ and $y^{\prime}(0)=0$, using Laplace transform.

